Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum.
نویسندگان
چکیده
The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O(2) pressure (pO(2)) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary "switching" of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.
منابع مشابه
Alternative pathways of spirilloxanthin biosynthesis in Rhodospirillum rubrum.
Detailed studies of the properties of carotenoids isolated from diphenylamine-inhibited cultures of Rhodospirillum rubrum have revealed a number of novel structures that indicate new features of carotenoid biosynthesis in the photosynthetic bacteria. Both neurosporene and 7,8,11,12-tetrahydrolycopene undergo hydration, methylation and dehydrogenation to yield spheroidene and 11',12'-dihydrosphe...
متن کاملRedox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum.
It is now well established that, for photosynthetic bacteria, the aerobic-to-microaerophilic transition activates the membrane-bound sensor kinase RegB, which subsequently phosphorylates the transcriptional activator RegA, thereby inducing elevated levels of intracellular photosynthetic membranes. The mechanism of RegB activation--in particular, the role of ubiquinone-10--is controversial at pr...
متن کاملPhotolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase.
Rhodospirillum rubrum and Rhodobacter sphaeroides were shown to be capable of photolithoautotrophic growth in the absence of the reductive pentose phosphate (Calvin) cycle. Ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strains were incapable of photolithoautotrophic growth using hydrogen as an electron donor but were able to grow in the absence of organic carbon using less ...
متن کاملA Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria
A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for...
متن کاملOxidative phosphorylation in extracts of Rhodospirillum rubrum.
The purple photosynthetic bacterium, Rhodospirillum rubrum, grows anaerobically only when illuminated with light of appropriate wave lengths. Extracts prepared from cells grown in this manner catalyze an anaerobic light-dependent phosphorylation of adenosine diphosphate to adenosine triphosphate (1). However, R. rubrum also can be grown heterotrophically in darkness if oxygen is provided (2). U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 11 شماره
صفحات -
تاریخ انتشار 2003